Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1		Attempt any Five of the following:		(10)
	a)	Define: (i) Moment of Inertia (ii) Radius of Gyration		
	Ans.			
		i) Moment of Inertia? Moment of Inertia of a body about any axis is equal to the product of the area of the body and square of the distance of its centroid from that axis. OR	1	
		Moment of inertia of a body about any axis is defined as the sum of second moment of all elementary areas about that axis.		2
		ii) Radius of Gyration: Radius of Gyration of a given area about any axis is that distance from the given axis at which the entire area is assumed to be concentrated without changing the M. I. about the given axis.	1	
	b)	State the relation between Young's modulus and bulk modulus.		
	Ans.	$\mathrm{E}=3 \mathrm{~K}(1-2 \mu)$	2	2
		$\text { Where, } \begin{aligned} \mathrm{E} & =\text { Young's Modulus } \\ \mathrm{K} & =\text { Bulk Modulus } \\ \mu & =\text { Poisson's Ratio } \end{aligned}$		

$\left.$| Que. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| No. | | Sub. |
| :--- |
| Que. |\quad| Total |
| :---: |
| Marks | \right\rvert\,

			Marks	Total Marks

	Sub. Que.	Model Answer	Marks	Total Marks

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	c) Ans.	A cantilever beam of span 2.5 m carries three point loads of $1 \mathrm{kN}, 2 \mathrm{kN}$, and 3 kN at $1 \mathrm{~m}, 1.5 \mathrm{~m}$, and 2.5 m from the fixed end. Draw S.F.D. and B.M.D. I. To calculate reaction at support A $\begin{aligned} & \Sigma \mathrm{Fy}=0 \\ & \mathrm{R}_{\mathrm{A}}-1-2-3=0 \\ & \mathrm{R}_{\mathrm{A}}=6 \mathrm{kN} \end{aligned}$ II. SF calculation: SF at $\mathrm{A}=+6 \mathrm{kN}$ $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=+6 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{R}}=+6-1=5 \mathrm{kN} \\ & \mathrm{D}_{\mathrm{L}}=+5 \mathrm{kN} \\ & \mathrm{D}_{\mathrm{R}}=+5-2=3 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{L}}=+3 \mathrm{kN} \\ & \mathrm{~B}=+3-3=0(\therefore \mathrm{ok}) \end{aligned}$ III. BM calculation: BM at $\mathrm{B}=0 \quad \because \mathrm{~B}$ is free end. $\begin{aligned} & \mathrm{D}=-3 \times 1=-3 \mathrm{kN}-\mathrm{m} \\ & \mathrm{C}=-3 \times 1.5-2 \times 0.5=-5.5 \mathrm{kN}-\mathrm{m} \\ & \mathrm{~A}=-3 \times 2.5-2 \times 1.5-1 \times 1=-11.5 \mathrm{kN}-\mathrm{m} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
	d)	A rectangular rod of size $50 \mathrm{~mm} \times 100 \mathrm{~mm}$ is bent into ' C ' shape as shown in Fig.no. 1 and applied load of 40 kN at point A. Calculate the resultant stresses developed at section x-x. Section $x-x$ Fig. No. 1 Data: $b=100 \mathrm{~mm}, \mathrm{~d}=50 \mathrm{~mm}, \mathrm{P}=40 \mathrm{kN}$ $A=b \times d=50 \times 100=5000 \mathrm{~mm}^{2}$ $\mathrm{I}=\frac{\mathrm{b} \times \mathrm{d}^{3}}{12}=\frac{50 \times 100^{3}}{12}=4.17 \times 10^{6} \mathrm{~mm}^{4}$ $\mathrm{Y}=\frac{\mathrm{b}}{2}=\frac{100}{2}=50 \mathrm{~mm}$ $\mathrm{M}=\mathrm{P} \times \mathrm{e}=40 \times 10^{3} \times 300=12 \times 10^{6} \mathrm{~N}-\mathrm{mm}$ $\sigma_{o}=\frac{\mathrm{P}}{\mathrm{~A}}=\frac{40 \times 10^{3}}{5000}=8 \mathrm{~N} / \mathrm{mm}^{2}$ $\sigma_{\mathrm{b}}=\frac{\mathrm{M}}{\mathrm{I}} \times Y=\frac{12 \times 10^{6}}{4.17 \times 10^{6}} \times 50=143.88 \mathrm{~N} / \mathrm{mm}^{2}$ $\sigma_{\max }=\sigma_{\mathrm{o}}+\sigma_{\mathrm{b}}$ $\sigma_{\max }=8+143.88=151.88 \mathrm{~N} / \mathrm{mm}^{2}$ $\begin{aligned} \sigma_{\min } & =\sigma_{\mathrm{o}}-\sigma_{\mathrm{b}} \\ \sigma_{\min } & =8-143.88=135.88 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	c)			
		$\begin{aligned} & A s=2 \times\left(\frac{\pi d_{s}^{2}}{4}\right)=2 \times\left(\frac{\pi \times 20^{2}}{4}\right)=628.32 \mathrm{~mm}^{2} \\ & A c=\left(\frac{\pi d_{c}{ }^{2}}{4}\right)=\left(\frac{\pi \times 20^{2}}{4}\right)=314.16 \mathrm{~mm}^{2} \end{aligned}$	1	
		$\begin{aligned} & P=P_{s}+P_{c} \\ & p=\sigma_{s} A_{s}+\sigma_{c} A_{c} \\ & 20 \times 10^{3}=\sigma_{s} 628.32+\sigma_{c} 314.16 \end{aligned}$	1	
		$\begin{aligned} & \frac{\sigma_{s} L_{s}}{E_{s}}=\frac{\sigma_{c} L_{c}}{E_{c}} \\ & \frac{\sigma_{s} \times 2000}{210 \times 10^{3}}=\frac{\sigma_{c} \times 1500}{110 \times 10^{3}} \\ & \sigma_{s}=1.43 \sigma_{c} \end{aligned}$	1	4
		$\begin{aligned} & 20 \times 10^{3}=\left(1.43 \sigma_{c}\right) 628.32+\sigma_{c} 314.16 \\ & \sigma_{c}=16.49 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$		
		$\begin{aligned} & \sigma_{s}=1.43 \sigma_{c} \\ & \sigma_{s}=1.43 \times 16.49=23.58 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1	
	d) Ans.	Calculate safe axial load in tension for a steel bar of cross-section $\mathbf{7 5 ~ m m} \times 12 \mathrm{~mm}$, if allowable maximum stress is $\mathbf{1 5 5} \mathbf{~ M P a}$. Data: $\mathrm{b}=75 \mathrm{~mm}, \mathrm{~d}=12 \mathrm{~mm}, \sigma_{\text {allowable }}=155 \mathrm{MPa}$ Calculate: $\mathrm{P}_{\text {safe }}$		
		$\begin{aligned} & \mathrm{A}=\mathrm{b} \times \mathrm{d}=75 \times 12=900 \mathrm{~mm}^{2} \\ & \sigma_{\text {allowable }} \frac{\mathrm{P}_{\text {safe }}}{\mathrm{A}} \end{aligned}$	1 1	
		$\mathrm{P}_{\text {safe }}=\sigma_{\text {allowable }} \times \mathrm{A}$ $\mathrm{P}_{\text {safe }}=155 \times 900=139500 \mathrm{~N}$	1	4
		$\mathrm{P}_{\text {safe }}=139.5 \mathrm{kN}$	1	

			Marks	Total Marks

\begin{tabular}{|c|c|c|c|c|}
\hline Que.
No. \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answer \& Marks \& Total Marks \\
\hline Q. 5 \& \begin{tabular}{l}
a) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Attempt any TWO of the following: A cantilever beam 4 m long carries a u.d.l. of \(2 \mathrm{kN} / \mathrm{m}\) over 2 m from free end and point load of 4 kN at free end. Draw SF and BM diagrams. \\
i) Support Reaction Calculation:
\[
\begin{aligned}
\& \Sigma \mathrm{Fy}=0 \\
\& \mathrm{R}_{\mathrm{A}}-4-(2 \times 2)=0 \\
\& \mathrm{R}_{\mathrm{A}}=8 \mathrm{kN}
\end{aligned}
\] \\
ii) Shear Force Calculations:
\[
\begin{aligned}
\& (\mathrm{F})_{A}=+8 \mathrm{kN} \\
\& \left(\mathrm{~F}_{\mathrm{R}}\right)_{\mathrm{A}}=+8 \mathrm{kN} \\
\& (\mathrm{~F})_{\mathrm{C}}=+8 \mathrm{kN} \\
\& (\mathrm{~F})_{\mathrm{B}}=+4=4 \mathrm{kN} \\
\& \left(\mathrm{~F}_{\mathrm{R}}\right)_{\mathrm{B}}=4-4=0 \mathrm{kN}
\end{aligned}
\] \\
iii) Bending Moment Calculations:
\[
\begin{aligned}
\& \mathrm{M}_{\mathrm{B}}=0 \mathrm{kN}-\mathrm{m} \quad \text { B is free end } \\
\& \mathrm{M}_{\mathrm{C}}=-(4 \times 2)-(2 \times 2) \times \mathrm{x}=-12 \mathrm{kN}-\mathrm{m} \\
\& \mathrm{M}_{\mathrm{A}}=-(4 \times 4)-(2 \times 2) \times 3 \neq-28 \mathrm{kN}-\mathrm{m}
\end{aligned}
\]
\end{tabular} \& 2

2

1
1

1 \& | (12) |
| :---: |
| |
| |
| |

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	c) Ans.	A diamond shaped pier with diagonals $\mathbf{3} \mathrm{m}$ and 6 m is subjected to an eccentric load of 1500 kN at a distance of 1 m from centroid and on the longer diagonal. Calculate the maximum stress induced in the section. Data: $\mathrm{P}=1500 \mathrm{kN} \mathrm{e}=1 \mathrm{~m}$ To find $\sigma_{\max }=$? Direct stress, $\sigma_{0}=\frac{P}{A}=\frac{1500 \times 10^{3}}{2\left(\frac{1}{2} \times 3000 \times 3000\right)}=0.1667 \mathrm{~N} / \mathrm{mm}^{2}$ Bending Moment, $M=\operatorname{Pxe}=\left(1500 \times 10^{3}\right) \times\left(1 \times 10^{3}\right)=1.5 \times 10^{9} \mathrm{~N}-\mathrm{mm}$ As the eccentricity is about Centroidal $\mathrm{X}-\mathrm{X}$ axis, therefore $\mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{DB}}=\mathrm{I}_{\text {base }}=2 \mathrm{x}\left(\frac{b h^{3}}{12}\right)=2 \times\left(\frac{3000 \times 3000^{3}}{12}\right)=13.5 \times 10^{12} \mathrm{~mm}^{4}$ Distance of extreme layer (i.e. point A or C) from X-X axis - $\mathrm{Y}=6000 / 2=3000 \mathrm{~mm}$ Section modulus: $\mathrm{Z}_{\mathrm{xx}}=\frac{I_{x x}}{Y}=\frac{13.5 \times 10^{12}}{3000}=4.5 \times 10^{9} \mathrm{~mm}^{3}$ Bending Stress: $\sigma_{\mathrm{b}}=\frac{M}{Z_{x x}}=\frac{1.5 \times 10^{9}}{4.5 \times 10^{9}}=0.333 \mathrm{~N} / \mathrm{mm}^{2}$ Maximum Bending Stress: $\sigma_{\max }=\sigma_{0}+\sigma_{\mathrm{b}}=0.1667+0.333=0.5 \mathrm{~N} / \mathrm{mm}^{2} \text { (Compressive) }$	1 1 1 1 1 1 1 1	6

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6		Attempt any TWO of the following:		(12)
	a) Ans.	A cantilever is 2 m long and is subjected to udl of $2 \mathrm{kN} / \mathrm{m}$. The cross section of cantilever is tee section with flange 80 mm x 10 $\mathbf{m m}$ and web of $\mathbf{1 0 ~ m m} \times 120 \mathrm{~mm}$ such that its total depth is $\mathbf{1 3 0}$ mm . The flange is at the top and web is vertical. Determine maximum tensile stress and compressive stress developed and their positions. Data: $\mathrm{L}=2 \mathrm{~m}, w=2 \mathrm{kN} / \mathrm{m}$ To find: $\sigma_{\mathrm{c}(\text { max })}$ and $\sigma_{\mathrm{t}(\text { max })}$	1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	a) b) (i) Ans.	$\begin{gathered} \bar{Y}_{\text {base }}=\mathrm{Y}_{\mathrm{C}}=86 \mathrm{~mm} \\ \mathrm{Y}_{\mathrm{t}}=130-86=44 \mathrm{~mm} \end{gathered}$ Maximum Compressive and Tensile Stress developed: $\begin{aligned} & \frac{M_{\max }}{I}=\frac{\sigma_{C}}{Y_{C}}=\frac{\sigma_{t}}{Y_{t}} \\ & \frac{4 \times 10^{6}}{347.466 \times 10^{4}}=\frac{\sigma_{C}}{86}=\frac{\sigma_{t}}{44} \\ & \sigma_{C}=\frac{4 \times 10^{6} \times 86}{347.466 \times 10^{4}}=99.002 \mathrm{~N} / \mathrm{mm}^{2} \text { (At Botton fiber) } \\ & \sigma_{t}=\frac{4 \times 10^{6} \times 44}{347.466 \times 10^{4}}=50.652 \mathrm{~N} / \mathrm{mm}^{2} \quad(\text { At Top fiber) } \end{aligned}$ A steel rod 800 mm long and $60 \mathrm{~mm} \times 20 \mathrm{~mm}$ in cross section is subjected to an axial push of 89 kN . If the modulus of elasticity is $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the stress, strain and reduction in the length of rod. Data: $\mathrm{L}=800 \mathrm{~mm}, \mathrm{~b}=60 \mathrm{~mm}, \mathrm{~d}=20 \mathrm{~mm}, \mathrm{P}=89 \mathrm{kN}, \mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ Find $\sigma, \mathrm{e}, \delta_{\mathrm{L}}$ Stress induced in the steel rod: $\sigma=\frac{P}{A}=\frac{89 \times 10^{3}}{60 \times 20}=74.17 \mathrm{~N} / \mathrm{mm}^{2}$ Strain induced in the steel rod: $\begin{aligned} & E=\frac{\sigma}{e} \\ & 2.1 \times 10^{5}=\frac{74.17}{e} \\ & \mathbf{e}=\mathbf{3 . 5 3 \times 1 0} \end{aligned}$ Reduction in the length: $\begin{aligned} & \delta_{\mathrm{L}}=\frac{P L}{A E}=\frac{89 \times 10^{3} \times 800}{(60 \times 20) \times 2.1 \times 10^{5}} \\ & \delta_{\mathbf{L}}=\mathbf{0 . 2 8 3 5} \mathbf{~ m m} \end{aligned}$	1 1 1 1 1 1 1	6

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	b) (ii) Ans. c) Ans.	Differentiate between linear and lateral strain. A hollow rectangular beam section square in/size having outer dimensions $120 \mathrm{~mm} \times 120 \mathrm{~mm}$ with uniform thickness of material 20 mm is carrying a shear force of 125 kN . Calculate the maximum shear stress induced in the section. Data: $\mathrm{B}=\mathrm{D}=120 \mathrm{~mm}, \mathrm{t}=20 \mathrm{~mm}, \mathrm{~F}=125 \mathrm{kN}$ Beam Section $\mathrm{b}=\mathrm{d}=120-2 \mathrm{t}=120-2 \times 20=80 \mathrm{~mm}$ Consider the area above the N.A. Shear stress $\left(\tau_{1}\right)$ at the bottom of flange by taking width $(b=120 \mathrm{~mm})$ $\begin{aligned} & \tau_{1}=\frac{F A \bar{Y}}{I b} \\ & \bar{Y}=60-\frac{20}{2}=50 \mathrm{~mm} \end{aligned}$	22^{2}	6

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	c)	$\begin{aligned} & \mathrm{I}=\frac{1}{12}\left(B D^{3}-b d^{3}\right)=\frac{1}{12}\left(120 \times 120^{3}-80 \times 80^{3}\right)=13.866 \times 10^{6} \mathrm{~mm}^{4} \\ & \therefore \tau_{1}=\frac{\left(125 \times 10^{3}\right) \times(120 \times 20) \times 50}{13.866 \times 10^{6} \times 120}=\mathbf{9 . 0 1 5} \mathbf{N} / \mathbf{m m}^{2} \end{aligned}$ Shear stress (τ_{2}) at the bottom of flange by taking width ($b=20+20=40 \mathrm{~mm}$) $\therefore \tau_{2}=\tau_{1} \times \frac{120}{40}=9.015 \times \frac{120}{40} 27.045 \mathrm{~N} / \mathbf{m m}^{2}$ Width at N.A. $=20+20=40 \mathrm{~mm}$ Web area above the N.A. $A=2 \times(40 \times 20)=1600 \mathrm{~mm}^{2}$ C.G. of this area from N.A. $\bar{Y}=\frac{40}{2}=20 \mathrm{~mm}$ \therefore Additional Shear Stress due to web area above the N.A. is given by $\begin{aligned} \tau_{\text {additional }}= & \frac{F A \bar{Y}}{I b}=\frac{\left(125 \times 10^{3}\right)(1600)(20)}{13.866 \times 10^{6} \times 40}=7.212 \mathrm{~N} / \mathrm{mm}^{2} \\ \tau_{\max }=\tau_{\mathrm{NA}} & =\tau_{2}+\tau_{\text {additional }} \\ & =27.045+7.212 \\ & =\mathbf{3 4 . 2 5 6} \mathbf{N} / \mathrm{mm}^{2} \end{aligned}$	1 1 1 1 1	6

