

Model Answer: Summer- 2019

Subject: Strength of Materials

DEGREE & DIPLOMA ENGINEERING

Sub. Code: 22306

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Oue.	Sub.			Total
No.	Que.	Model Answer	Marks	Marks
Q.1		Attempt any <u>Five</u> of the following:		(10)
	a)	Define:		
		(i) Moment of Inertia		
		(ii) Radius of Gyration		
	Ans.			
		i) Moment of Inertia: Moment of Inertia of a body about any axis is		
		equal to the product of the area of the body and square of the distance	1	
		of its centroid from that axis.	1	
		Noment of inertia of checky shout any axis is defined as the sum of		2
		Moment of mertia of a body about any axis is defined as the sum of		2
		second moment of an elementary areas about that axis.		
		ii) Radius of Gyration: Radius of Gyration of a given area about any axis is that distance from the given axis at which the entire area is	1	
		assumed to be concentrated without changing the M. I. about the given axis.		
	b)	State the relation between Young's modulus and bulk modulus.		
	Ans.	$E = 3K(1 - 2\mu)$	2	2
		Where, E= Young's Modulus		
		K= Bulk Modulus		
		μ = Poisson's Ratio		
		OUR CENTERS :		

Contact - 9136008228

Model Answer: Summer- 2019

Subject: Strength of Materials

Subject: Strength of Materials

Subject: Strength of Materials

Sub. Code: 22306

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2		Attempt any <u>THREE</u> of the following:		(12)
	a)	A hollow square has inner dimensions a \times a and outer dimensions		
		$2a \times 2a$. Find moment of inertia about the outer side.		
	Ans.	y_1 2a x - 2a a a a a a a a	1	
		$h = \frac{2a}{2} = a$		
		$I_{AB} = \begin{bmatrix} I_G + Ah^2 \end{bmatrix}_1 - \begin{bmatrix} I_G + Ah^2 \end{bmatrix}_2$ $I_{AB} = \begin{bmatrix} \frac{b^4}{12} + Ah^2 \end{bmatrix}_1 - \begin{bmatrix} \frac{b^4}{12} + Ah^2 \end{bmatrix}_2$	1	
		$I_{AB} = \left[\frac{(2a)^4}{12} + (2a \times 2a) \times a^2\right]_1 - \left[\frac{(a)^4}{12} + (a \times a) \times a^2\right]_2$ $I_{AB} = \left[\frac{16a^4}{12} + 4a^4\right]_1 - \left[\frac{a^4}{12} + a^4\right]_2$	1	4
		$I_{AB} = \left[\frac{64a^4}{12}\right]_1 - \left[\frac{13a^4}{12}\right]_2$ $I_{AB} = a^4 \left[\frac{64-13}{12}\right]$		
		$I_{AB} = a^{4} \left[\frac{51}{12} \right]$ $I_{AB} = 4.25a^{4}$	1	
	b)	In a bi-axial stress system the stresses along the two directions are $\sigma_x = 60 \text{ N/mm}^2$ (tensile) and $\sigma_y = 40 \text{ N/mm}^2$ (compressive). Find the maximum strain. Take E = 200 kN/mm ² and m = 4.		

Sub. Code: 22306

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2	Ans.	$\sigma = (\sigma_x) (\mu \sigma_y)$	1	
		$e_x = \left(\frac{E}{E}\right)^{-} \left(\mu \frac{E}{E}\right)$		
		$=\frac{1}{E}(\sigma_{x}-\mu\times\sigma_{y})$		
		$=\frac{1}{200\times10^3}(60 + 0.25\times40)$	1	4
		$e_x = 3.5 \times 10^{-4}$	1	4
		$\mathbf{e}_{\mathbf{y}} = \left(\frac{\sigma_{\mathbf{y}}}{E}\right) - \left(\mu \frac{\sigma_{\mathbf{x}}}{E}\right)$		
		$=\frac{1}{E}\left(\sigma_{y}-\mu\sigma_{x}\right)$		
		$=\frac{1}{200\times10^3}(-40-0.25\times60)$		
		$e = -2.75 \times 10^{4}$	1	
		Maximum strain is e _x =3.5×10 ⁻⁴	1	
	c)	A simply supported beam of span 5 m carries two point loads of		
		5kN and 7 kN at 1.5 m and 3.5 m from the left hand support		
		respectively. Draw S.F.D. and B.M.D. showing important values.		
	Ans.	I. Support Reactions:		
		$\sum M_A = 0$		
		$5 \times 1.5 + 7 \times 3.5 - R_{\rm B} \times 5 = 0$		
		$5 \times R_{\rm B} = 32$	1	
		$R_{\rm B} = 6.4 \rm kN$		
		$\sum F_y = 0$		
		$R_{A} + R_{B} - 5 + 7 = 0$		
		$\mathbf{R}_{A} + \mathbf{R}_{B} = 12$		
		$R_A = 5.0 \text{ KIN}$		
		SF at $A = +5.6$ kN		
		$C_{1} = +5.6 \text{kN}$	1	
		$C_{R} = 5.6 - 5 = 0.6 \text{kN}$	•	
		$D_{L} = +0.6 kN$		
		$D_{R} = +0.6 - 7 = -6.4 \text{kN}$		
		$B_{L} = -6.4 \text{kN}$		
		B = +6.4 - 6.4 = 0 k N (: 0 k)		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer- 2019

Subject: Strength of Materials

_.

Sub. Code: 22306 _____

0.2	Oue.	Model Answer	Marks	Marks
×	c)	B.M. calculation:-		
		B.M at A and $B=0$ Since support A and B are simple.		
		B.M at C = $5.6 \times 1.5 = 8.4$ kN-m	1	4
		B.M at D = $6.4 \times 1.5 = 9.6$ kN-m		
	d)	Explain the theory of pure torsion.	1	
	Ans.	A shaft is a rotating part of machine which transmits power from one point to other. When a force acts tangentially at a point on the surface of the shaft it rotates or twist. The twisting is due to the moment of a tangential force at the axis of rotation. The shaft is said to be in torsion. The study of behavior of the shaft in torsion without taking into account bending moment due to self-weight or other longitudinal forces known as pure torsion .	3	4
		Due to torsion shearing stress are induced in the material of the shaft. Every point in the material of the shaft is subjected to pure shear. Torsional Equation is $\frac{\overline{G\theta}}{L} = \frac{T}{I_p} = \frac{\tau}{R}$	1	

Model Answer: Summer- 2019

Subject: Strength of Materials

Sub. Code: 22306

Que No.	Sub. Que.	Model Answer	Marks	Total Marks
		Where, T = Torque or Turning moment (N-mm) $I_P = I_{xx} + I_{yy}$ Polar momet of inertia of the shaft section (mm ⁴) G = Modulus of rigidity of the shaft material (N/mm2) $\theta = Angle through which the shaft is twisted due to torque i.e. angle of twist (radians)$ L = Lenght of the shaft (mm) $\tau = Maximum shear stress induced at the outermost layer of the shaft (N/mm2) R = Radius of the shaft (mm)$		
Q.3	D)	Attempt any <u>THREE</u> of the following: A cylindrical bar is 30mm in diameter and 2000mm long. The bar is		(12)
	a)	subjected to uniform stress of 100 N/mm ² in all directions. Calculate the modulus of rigidity and bulk modulus. If the modulus of elasticity is 1×10^5 N/mm ² and Poisson's ratio is 0.2.		
	Ans.	Data: d=30mmØ, L=2000mm, $\sigma = 100$ N/mm ² , E=1×10 ⁵ N/mm ² , $\mu = 0.2$ Find: K and G		
		$V = A \times L = \frac{\pi d^2}{4} \times L = \frac{\pi \times 30^2}{4} \times 2000 = 1413716.69 \text{ mm}^3$		
		$\delta V = \frac{1}{E} (1 - 2\mu) V$ $\delta V = \frac{3 \times 100}{1 \times 10^5} \times (1 - 2 \times 0.2) \times 1413716.69 = 2544.69 \text{mm}^3$		
		$K = \frac{\sigma}{\left(\frac{\delta V}{V}\right)} = \frac{100}{\left(\frac{2544.69}{1413716.69}\right)} = 5.55 \times 10^4 \text{N/mm}^2$		
		OR	2	4
		$E = 3K(1-2\mu)$ 1×10 ⁵ = 3K(1-2×0.2) K = 5.55×10 ⁴ N/mm ²		
		$E = 2G(1+\mu)$		
		$1 \times 10^5 = 2G(1+0.2)$		
		$G = 4.16 \times 10^{\circ} \text{ N/mm}^{-1}$	2	

Model Answer: Summer- 2019

Sub. Code: 22306

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
	b)	Find the bending stress induced in the steel flat 40mm wide and 5mm thick if it is required to bend into an arc of a circle of radius 2.5m. Also calculate the moment required to bend the flat. Take $E=2\times10^5$ MPa.		
	Ans.	Data: b=40mm, t=5mm, R =2.5m, E= 2×10^5 MPa. Find: σ_b and BM	1	
		$I_{xx} = \frac{bd^{3}}{12} = \frac{40 \times 5^{3}}{12} = 416.67 \text{mm}^{4}$ $V = \frac{t}{12} = 5 = 2.5 \text{mm}^{4}$		
		$\frac{1-2}{2} = \frac{-2.5}{2}$ Bending stress equation:		
		$\frac{\sigma_{b}}{M} = \frac{M}{E}$	1	4
		$\begin{array}{c} \overline{Y}^{-}\overline{I}^{-}\overline{R} \\ \overline{Q} \end{array}$	1	4
		$\frac{\sigma_{b}}{Y} = \frac{E}{R}$	1	
		$\sigma_{\rm b} = \frac{\rm E}{\rm R} \times {\rm Y} = \frac{2 \times 10^5}{2500} \times 2.5 = 200 {\rm N/mm^2}$	1	
		$\frac{M}{I} = \frac{E}{R}$	1	
		$M = \frac{E}{R} \times I = \frac{2 \times 10^3}{2500} \times 416.67 = 3.33 \times 10^4 \text{ N-mm}$		

Model Answer: Summer- 2019

Sub. Code: 22306

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.3	c) Ans.	A cantilever beam of span 2.5m carries three point loads of 1kN, 2kN, and 3kN at 1m, 1.5m, and 2.5m from the fixed end. Draw S.F.D. and B.M.D. I. To calculate reaction at support A $\Sigma Fy = 0$ $R_A - 1 - 2 - 3 = 0$ $R_A = 6kN$		
		II. SF calculation: SF at A = +6kN $C_L = +6kN$ $C_R = +6-1= 5kN$ $D_L = +5kN$ $D_R = +5-2= 3kN$ $B_L = +3kN$ B = +3-3= 0 (: ok)	1	
		III. BM calculation: BM at $B = 0$ \therefore B is free end. $D = -3 \times 1 = -3kN-m$ $C = -3 \times 1.5 - 2 \times 0.5 = -5.5kN-m$ $A = -3 \times 2.5 - 2 \times 1.5 - 1 \times 1 = -11.5kN-m$	1	4
		A = 6 kN $A = 6 kN$ $C = D = B = B = B = B = B = B = B = B = B$	1	
		- 3 kN.m 5.5 kN.m 11.5kN.m (c) B.M.D.	1	

Model Answer: Summer- 2019

Subject: Strength of Materials

Sub. Code: 22306

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
	d)	A rectangular rod of size 50mm×100mm is bent into 'C' shape as shown		
		in Fig.no. 1 and applied load of 40kN at point A. Calculate the resultant		
		stresses developed at section x-x.		
		- Joann +		
		+40KN		
		₩ 50 mm		
		دمينية 10 10		
		Section X-X		
		Data: $b=100$ mm, $d=50$ mm, $P=40$ kN		
	Ans.			
		$A = b \times d = 50 \times 100 = 5000 \text{mm}^2$		
		$b \times d^3 = 50 \times 100^3$ 4.17×10^6	1	
		$1 = \frac{12}{12} = \frac{12}{12} = 4.17 \times 10$ mm	•	
		$Y = \frac{b}{b} = \frac{100}{50000} = 500000$		
		$M = P \times e = 40 \times 10^3 \times 300 = 12 \times 10^6 \text{ N-mm}$		
		$P = 40 \times 10^3$	1	4
		$\sigma_{0} = \frac{1}{A} = \frac{40 \times 10}{5000} = 8 \text{N/mm}^{2}$	1	4
		$\pi = \frac{M}{12 \times 10^6} \times 50 = 142.88 \text{ N/mm}^2$	1	
		$G_{\rm b} - \frac{1}{I} \times I = \frac{1}{4.17 \times 10^6} \times 30 = 145.881 \text{/mm}$	1	
		$\sigma_{\rm max} = \sigma_0 + \sigma_b$		
		$\sigma_{\rm max} = 8 + 143.88 = 151.88 \text{N/mm}^2$		
			1	
		$\sigma_{\rm min} = \sigma_{\rm o} - \sigma_{\rm b}$		
		$\sigma_{\rm min} = 8 - 143.88 = 135.88 {\rm N/mm^2}$		

Sub. Code: 22306

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4		Attempt any <u>THREE</u> of the following:		(12)
	a)	State and explain perpendicular axis theorem of moment of Inertia.		
	Ans.	Perpendicular axis theorem: It states "MI of a plane lamina about an axis perpendicular to the plane of lamina and passing through the centroid of the lamina is equal to the addition of the moments of	1	
		Figure below shows the plane lamina laying in XY plane, OX and OY are mutually perpendicular and OZ is the axis perpendicular to plane XY of the lamina.	1	4
		A A A A A A A A A A A A A A A A A A A	1	
		MI of lamina about OZ is $I_z = \Sigma dA(r^2)$ $I_z = \Sigma dA(x^2 + y^2)$ $I_z = \Sigma dA(x^2) + \Sigma dA(y^2)$ $I_z = I_x + I_y$	1	
	b)	A steel bar 50 mm \times 50 mm in section, 3m long is subjected to an axial pull of 20kN. Calculate the change in length and change in side of the bar. Take E = 200 GPa and Poission's ratio = 0.3.		
	Ans.	Data: b=50 mm, d =50 mm, L=3m, P = 20 kN, E = 200 GPa μ = 0.3 Calculate: δ L, δ b, and δ d		
		$\delta L = \frac{PL}{AE}$ $\delta L = \frac{20 \times 10^3 \times 3 \times 10^3}{50 \times 50 \times 200 \times 10^3}$	1	
		$\delta L = 0.12 \text{mm}$	1	

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Sub. Code: 22306

Sub Code:

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	c)	$As = 2 \times \left(\frac{\pi d_s^2}{4}\right) = 2 \times \left(\frac{\pi \times 20^2}{4}\right) = 628.32 \text{mm}^2$ $Ac = \left(\frac{\pi d_c^2}{4}\right) = \left(\frac{\pi \times 20^2}{4}\right) = 314.16 \text{mm}^2$	1	
		$P = P_s + P_c$ $p = \sigma_s A_s + \sigma_c A_c$ $20 \times 10^3 = \sigma_s 628.32 + \sigma_c 314.16$	1	
		$\frac{\sigma_s L_s}{E_s} = \frac{\sigma_c L_c}{E_c}$ $\frac{\sigma_s \times 2000}{210 \times 10^3} = \frac{\sigma_c \times 1500}{110 \times 10^3}$	1	4
		$\sigma_{s} = 1.43\sigma_{c}$ $20 \times 10^{3} = (1.43\sigma_{c})628.32 + \sigma_{c} 314.16$ $\sigma_{c} = 16.49 \text{N/mm}^{2}$ $\sigma_{s} = 1.43\sigma_{c}$	1	
	d) Ans.	$\sigma_s = 1.43 \times 16.49 = 23.58$ N/mm ² Calculate safe axial load in tension for a steel bar of cross-section 75 mm × 12 mm, if allowable maximum stress is 155 MPa. Data: b = 75 mm, d = 12 mm, $\sigma_{allowable} = 155$ MPa		
		Calculate: P_{safe} $A = b \times d = 75 \times 12 = 900 \text{ mm}^2$ $\sigma_{allowable} = \frac{P_{safe}}{A}$	1	
		$P_{safe} = \sigma_{allowable} \times A$ $P_{safe} = 155 \times 900 = 139500 N$	1	4
		$P_{\text{safe}} = 139.5 \text{ kN}$	1	

Sub. Code: 22306

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	e)	A bar of 30 mm diameter is subjected to a pull of 60 kN. The measured extension on gauge length of 200 mm is 0.09 mm and the change in diameter is 0.0039 mm. Calculate the Poission's ratio and modulus of elasticity.		
	Ans.	Data: d=30 mm, L=200 mm, P =60 kN, δ_L =0.09 mm, δ_d = 0.0039 mm Calculate: μ and E		
		A = $\frac{\pi d^2}{4} = \frac{\pi \times 30^2}{4} = 706.858 \text{mm}^2$		
		$E = \frac{PL}{A\delta_{L}} = \frac{60 \times 10^{3} \times 200}{706.858 \times 0.09} = 188628.08 \text{N/mm}^{2}$ $E = 1.89 \text{ N/mm}^{2}$	2	
		$\mu = \frac{\text{Lateral Strain}}{\text{Linear Strain}}$		
		$\mu = \frac{\left(\frac{\delta_{d}}{d}\right)}{\left(\frac{\delta_{L}}{L}\right)} = \frac{\left(\frac{0.0039}{30}\right)}{\left(\frac{0.09}{200}\right)} = 0.29$	2	4
		$\mu = 0.29$	2	•

Sub. Code: 22306

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.5	a)	Attempt any <u>TWO</u> of the following: A cantilever beam 4 m long carries a u.d.l. of 2 kN/m over 2 m from free end and point load of 4 kN at free end. Draw SF and BM diagrams.		(12)
	Ans.	i) Support Reaction Calculation: $\Sigma Fy = 0$ $R_A - 4 - (2x2) = 0$ $R_A = 8 \text{ kN}$ ii) Glass Free Calculation		
		ii) Shear Force Calculations: $(F)_{A} = +8 \text{ kN}$ $(F)_{R} = +8 \text{ kN}$ $(F)_{C} = +8 \text{ kN}$ $(F)_{B} = +4 = 4 \text{ kN}$ $(F_{R})_{B} = 4 - 4 = 0 \text{ kN}$ iii) Bending Moment Calculations:	2	
		$M_{B} = 0 \text{ kN-m} B \text{ is free end.}$ $M_{C} = -(4x2) - (2x2)x1 = -12 \text{ kN-m}$ $M_{A} = -(4x4) - (2x2)x3 = -28 \text{ kN-m}$ $A = -(4x4) - (2x2)x3 = -28 \text{ kN-m}$ $A = -2 \text{ kN/m}$ $A = -2 \text$	2	6
		$\begin{array}{c} 8kN \\ \hline \\ A \\ A \\ \hline \\ A \\ \hline \\ C \\ \hline \\ B \\ \hline \\ \hline \\ B \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	1	
		28kN-m (c) B.M.D.	1	

Model Answer: Summer- 2019

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.5	b)	Select a suitable diameter for a solid circular shaft to transmit 200HP at 180 rpm. The allowable shear stress is 80 N/mm ² and the allowable angle of twist is 1° in a length of 3m. Take $C = 0.82 \text{ x}$ 10 ⁵ N/mm ² .		
	Ans.	Data: P = 200 HP, N = 180 rpm, τ = 80 N/mm ² θ =1°, L = 3 m C = 0.82 x 10 ⁵ N/mm ²		
		Find d		
		Case – I Diameter of shaft based on Shear Strength Criteria: $P = \left(\frac{2\pi NT}{4500}\right) HP$	1	
		$200 = \left(\frac{2\pi \times 180 \times T}{4500}\right)$ T = 795.775 kg-m		
		T = 795.775 x 9.81 N-m T = 7806.5499 x 10 ³ N-mm	1	
		By using the relation π		
		$T = \frac{1}{16} \times \tau \times d^3$		
		$7806.5499 \text{ x } 10^3 = 16$ d = 79.21 mm	1	6
		Case – II Diameter of shaft based on Rigidity Criteria:		
		By using the relation: $\frac{T}{J} = \frac{C\theta}{L}$	1	
		$\frac{7806.5499 \times 10^{3}}{\pi_{4}} = \frac{0.82 \times 10^{5} \times \left(1^{0} \times \frac{\pi}{180}\right)}{3 \times 10^{3}}$		
		$\overline{32}^{a}$	1	
		d = 113.63 mm	1	
		Choose the diameter of solid circular shaft equal to 114mm to satisfy the given conditions.	1	

Model Answer: Summer- 2019

Sub. Code: 22306

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.5	c)	A diamond shaped pier with diagonals 3 m and 6 m is subjected to an eccentric load of 1500 kN at a distance of 1 m from centroid and on the longer diagonal. Calculate the maximum stress induced in the section.		
	Ans.	Data: $P = 1500 \text{ kN} \text{ e} = 1 \text{ m}$ To find $\sigma_{max} = ?$		
		Direct stress, $\sigma_0 = \frac{P}{A} = \frac{\frac{3m}{3m}}{2\left(\frac{1}{2} \times 3000 \times 3000\right)} = 0.1667 \text{ N/mm}^2$	1	
		Bending Moment, $M = Pxe = (1500 \times 10^3)x(1 \times 10^3) = 1.5 \times 10^9 \text{ N-mm}$	1	
		As the eccentricity is about Centroidal X-X axis, therefore $I_{xx} = I_{DB} = I_{base} = 2 \times \left(\frac{bh^3}{12}\right) = 2 \times \left(\frac{3000 \times 3000^3}{12}\right) = 13.5 \times 10^{12} \text{ mm}^4$	1	
		Distance of extreme layer (i.e. point A or C) from X-X axis – Y = 6000/2 = 3000 mm		
		Section modulus: $Z_{xx} = \frac{I_{xx}}{Y} = \frac{13.5 \times 10^{12}}{3000} = 4.5 \times 10^9 \mathrm{mm}^3$	1	6
		Bending Stress: $\sigma_{\rm b} = \frac{M}{Z_{xx}} = \frac{1.5 \times 10^9}{4.5 \times 10^9} = 0.333 \text{N/mm}^2$	1	
		Maximum Bending Stress: $\sigma_{max} = \sigma_0 + \sigma_b = 0.1667 + 0.333 = 0.5 \text{ N/mm}^2 \text{ (Compressive)}$	1	

Subject: Strength of Materials

Sub. Code: 22306

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6	Que:	Attempt any <u>TWO</u> of the following:		(12)
	a)	A cantilever is 2 m long and is subjected to udl of 2 kN/m. The cross section of cantilever is tee section with flange 80 mm x 10 mm and web of 10 mm x 120 mm such that its total depth is 130 mm. The flange is at the top and web is vertical. Determine maximum tensile stress and compressive stress developed and their positions.		
	Ans.	Data: $L = 2 \text{ m}$, $w = 2 \text{ kN/m}$ To find: $\sigma_{c(max)}$ and $\sigma_{t(max)}$		
		(a) Beam (b) Section (c) Sect	1	
		$M_{\text{max}} = \frac{wL^2}{2} = \frac{(2 \times 10^3) \times 2^2}{2} = 4 \times 10^3 N - m = 4 \times 10^6 N - mm$	1	
		$\overline{Y}_{base} = \frac{a_1 y_1 + a_2 y_2}{a_1 + a_2} = \frac{(80 \times 10) \times 125 + (10 \times 120) \times 60}{(80 \times 10) + (10 \times 120)} = 86mm$		
		$\mathbf{I}_{\mathrm{NA}} = \mathbf{I}_{\mathrm{XX}} = \left[\left(\frac{bd^3}{12} \right) + Ah^2 \right]_1 + \left[\left(\frac{bd^3}{12} \right) + Ah^2 \right]_2$		
		$I_{XX} = \left[\left(\frac{80 \times 10^3}{12} \right) + (80 \times 10) \times (44 - 5)^2 \right]_1 + \left[\left(\frac{10 \times 120^3}{12} \right) + (10 \times 120) \times (86 - 60)^2 \right]_2$		
		$I_{NA} = I_{XX} = 347.466 \times 10^4 \text{ mm}^4$	1	

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Sub. Code: 22306

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6	a)	$\overline{Y}_{base} = Y_{C} = 86 \text{ mm}$ $Y_{t} = 130 - 86 = 44 \text{ mm}$	1	6
		Maximum Compressive and Tensile Stress developed: $\frac{M_{\text{max}}}{I} = \frac{\sigma_C}{Y_C} = \frac{\sigma_t}{Y_t}$	1	
		$\frac{4 \times 10^{6}}{347.466 \times 10^{4}} = \frac{\sigma_{c}}{86} = \frac{\sigma_{t}}{44}$ $\sigma_{c} = \frac{4 \times 10^{6} \times 86}{247.466 \times 10^{4}} = 99.002N / mm^{2} \text{ (At Bottom fiber)}$		
		$\sigma_t = \frac{4 \times 10^6 \times 44}{347.466 \times 10^4} = 50.652N / mm^2 \text{ (At Top fiber)}$	1	
	b) (i)	A steel rod 800 mm long and 60 mm x 20 mm in cross section is subjected to an axial push of 89 kN. If the modulus of elasticity is 2.1 x 10 ⁵ N/mm ² . Calculate the stress, strain and reduction in the length of rod.		
	Ans.	Data: L=800mm, b=60mm, d=20mm, P=89kN, E=2.1x10 ⁵ N/mm ² Find σ , e , δ_L		
		Stress induced in the steel rod: $\sigma = \frac{P}{A} = \frac{89 \times 10^3}{60 \times 20} = 74.17 \text{ N/mm}^2$ Strain induced in the steel rod: $E = \frac{\sigma}{e}$ 74.17	1	
		2.1 x $10^5 = \frac{74.17}{e}$ e = 3.53 x 10 ⁻⁴ Reduction in the length:	1	
		$\delta_{\rm L} = \frac{PL}{AE} = \frac{89 \times 10^3 \times 800}{(60 \times 20) \times 2.1 \times 10^5}$	1	
		$\delta_L = 0.2835 \text{ mm}$	1	

Model Answer: Summer- 2019

Sub. Code: 22306 _____

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer			Total Marks	
Q.6	b)	Differentiate between linear an				
	(11) Ans.	Linear Strain	Lateral Strain			
	Alls.	The change in dimensions occurs in the direction of applied load is called as Linear Strain. $e = \frac{\delta_L}{L}$	The change in dimensions occurs in the direction perpendicular to the line of action of applied load is called as Lateral Strain. $e = \frac{\delta_b}{b}, \ e = \frac{\delta_t}{t}, \ e = \frac{\delta_d}{d}$	2	6	
	c) A hollow rectangular beam section square in size having outer dimensions 120 mm x 120 mm with uniform thickness of material 20 mm is carrying a shear force of 125 kN. Calculate the maximum shear stress induced in the section.					
	Ans.	Data: B = D = 120 mm, t = 20mm Find τ_{max} D = 120 mm D = 120 mm D = 120 mm B = 120 mm T = 120 - 2t = 120 - 2 mm Consider the area above the N.A. Shear stress (τ_1) at the bottom of $\tau_1 = \frac{FA\overline{Y}}{Ib}$ $\overline{Y} = 60 - \frac{20}{2} = 50 \text{ mm}$	m, $F = 125 \text{ kN}$ T = 80 mm T flange by taking width (b=120mm)	1		

Sub Co

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6	c)	$I = \frac{1}{12} (BD^{3} - bd^{3}) = \frac{1}{12} (120 \times 120^{3} - 80 \times 80^{3}) = 13.866 \times 10^{6} mm^{4}$	1	
		$\therefore \tau_1 = \frac{(125 \times 10^3) \times (120 \times 20) \times 50}{13.866 \times 10^6 \times 120} = 9.015 \text{ N/mm}^2$	1	
		Shear stress (τ_2) at the bottom of flange by taking width $(b=20+20=40mm)$		
		$\therefore \tau_2 = \tau_1 \ge \frac{120}{40} = 9.015 \ge \frac{120}{40} = 27.045 \text{ N/mm}^2$	1	6
		Width at N.A. $= 20 + 20 = 40 \text{ mm}$		U
		Web area above the N.A.		
		$A = 2 x (40x20) = 1600 mm^2$		
		C.G. of this area from N.A.		
		$\overline{Y} = \frac{40}{2} = 20mm$		
		: Additional Shear Stress due to web area above the N.A. is given by		
		$\tau_{additional} = \frac{FA\overline{Y}}{Ib} = \frac{(125 \times 10^3)(1600)(20)}{13.866 \times 10^6 \times 40} = 7.212N / mm^2$	1	
		$\tau_{\max} = \tau_{NA} = \tau_2 + \tau_{additional}$		
		= 27.045 + 7.212		
		$= 34.256 \text{ N/mm}^2$	1	